On Short Zero-Sum Subsequences of Zero-Sum Sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Short Zero-sum Subsequences of Zero-sum Sequences

Abstract. Let G be a finite abelian group, and let η(G) be the smallest integer d such that every sequence over G of length at least d contains a zero-sum subsequence T with length |T | ∈ [1, exp(G)]. In this paper, we investigate the question whether all non-cyclic finite abelian groups G share with the following property: There exists at least one integer t ∈ [exp(G)+1, η(G)− 1] such that eve...

متن کامل

On Short Zero-sum Subsequences Ii

Let G be a finite abelian group of exponent n. In this paper we investigate the structure of the maximal (in length) sequences over G that contain no zero-sum subsequence of length [at most] n. Among others, we obtain a result on the multiplicities of elements in these sequences, which support well-known conjectures on the structure of these sequences. Moreover, we investigate the related invar...

متن کامل

On the number of zero-sum subsequences

For a sequence S of elements from an additive abelian group G, let f(S) denote the number of subsequences of S the sum of whose terms is zero. In this paper we characterize all sequences S in G with f(S) > 2|S|−2, where |S| denotes the number of terms of S. MSC Classification : Primary 11B50, Secondary 11B65, 11B75.

متن کامل

On short zero-sum subsequences over p-groups

Let G be a finite abelian group with exponent n. Let s(G) denote the smallest integer l such that every sequence over G of length at least l has a zero-sum subsequence of length n. For p-groups whose exponent is odd and sufficiently large (relative to Davenport’s constant of the group) we obtain an improved upper bound on s(G), which allows to determine s(G) precisely in special cases. Our resu...

متن کامل

Zero-sum Balanced Binary Sequences

For every positive integer n ≡ 0 mod 4, we construct a zero-sum {±1}-sequence of length n which is balanced, i.e., whose associated Steinhaus triangle contains as many +1’s as −1’s. This implies the existence of balanced binary sequences of every length m ≡ 0 or 3 mod 4, thereby providing a new solution to a problem posed by Steinhaus in 1963.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2012

ISSN: 1077-8926

DOI: 10.37236/2602